Table II. Characteristic Constant k₁₂ for Binary Systems $$\left[k_{12} = 1 - \frac{T_{c_{13}}}{(T_{c_{11}}T_{c_{22}})^{1/2}}\right]$$ | a : | | L (| (1 c ₁₁ 1 c ₂₂)] | | | |---------------------------------------|----------------------|------------------------|--|-----------------------|------------------------| | System | 2 | $k_{12} \times 10^{2}$ | System 1 | 2 | $k_{12} \times 10^{2}$ | | 1 | | | , | | | | Methane | Ethylene | 1 | | Benzene
Toluene | (1) | | | Ethane | 1 2 | n-Heptane | n-Octane | Ô | | | Propylene
Propane | 2 | n-Heptane | Benzene | (1) | | | n-Butane | 4 | | Toluene | (1) | | | Isobutane | 4 | n-Octane | Benzene | (1) | | | n-Pentane | 6 | n-Octano | Toluene | (1) | | | Isopentane | 6 | Benzene | Toluene | (0) | | | n-Hexane | 8 | Carbon dioxide | Methane | (5 ± 2) | | | Cyclohexane | 8 | | Ethylene | 6 | | | n-Heptane | 10 | | Ethane | 8 | | | n-Octane | (12)a | | Propylene | 10 | | | Benzene | (8) | | Propane | 11 ± 1 | | | Toluene | (8) | | n-Butane | 16 ± 2 | | 2 8
1 10 1 2 2 1 4 | Naphthalene | 14 | | Isobutane | (16 ± 2) | | Ethylene (or ethane) | Ethane | 0 | Year of the second seco | n-Pentane | (18 ± 2) | | | Propylene | 0 | | Isopentane | (18 ± 2) | | | Propane | 0 | " | Naphthalene | 24 | | | n-Butane | 1 | Hydrogen sulfide | Methane | 5 ± 1 | | | Isobutane | 1 | | Ethylene | (5 ± 1) | | | n-Pentane | 2 | | Ethane | 6 | | | Isopentane | 2 | | Propylene | (7) | | | n-Hexane | 3 | | Propane | 8 (9) | | | Cyclohexane | 3 | | n-Butane
Isobutane | (9) | | | n-Heptane | (5) | | n-Pentane | 11 ± 1 | | | n-Octane
Benzene | 3 | | Isopentane | (11 ± 1) | | | Toluene | (3) | | Carbon di- | (11 - 1) | | | Naphthalene | 8 | | oxide | 8 | | Propylene (or propane) | Propane | Ö | Acetylene | Methane | (5) | | Propylene (or propane) | n-Butane | Ö | ricctylend | Ethylene | 6 | | | Isobutane | 0 | | Ethane | 8 | | | n-Pentane | 1 | | Propylene | 7 | | | Isopentane | 0 | | Propane | 9 | | | n-Hexane | (1) | | n-Butane | (10) | | | Cyclohexane | (1) | | Isobutane | (10) | | | n-Heptane | (2) | | n-Pentane | (11) | | | n-Octane | (3) | | Isopentane | (11) | | · · · · · · · · · · · · · · · · · · · | Benzene | 2 | Nitrogen | Methane | 3 | | | Toluene | (2) | The state of s | Ethylene | 4 | | n-Butane (or isobutane) | Isobutane | 0 | | Ethane | 5 | | | n-Pentane | 0 | | Propylene | (7) | | | Isopentane | 0 | | Propane | (9)
12 | | | n-Hexane | 0 | | n-Butane | 16 | | | Cyclohexane | 0 | A LOUGH TO THE SECOND STATE OF | Helium | 2 | | | n-Heptane | (1) | Argon | Methane
Ethylene | 3 | | | n-Octane
Benzene | $\binom{1}{1}$ | | Ethylene | 3 | | | Toluene | $\binom{1}{1}$ | | Oxygen | 1 | | n-Pentane (or isopentane) | Isopentane | 0 | | Nitrogen | 0 | | n-remaile (or isopentalie) | n-Hexane | 0 | | Helium | 5 ± 1 | | | Cyclohexane | 0 | Tetrafluoromethane | Methane | 7 | | | n-Heptane | 0 | - VI MILL VI VIII VIII VIII VIII VIII VII | Nitrogen | 2 | | | n-Octane | Ö | | Helium | (16 ± 2) | | | Benzene | (1) | Hydrogen | Methane | 3 | | | Toluene | (1) | Neon | Methane | 28 | | n-Hexane (or cyclohexane) | n-Heptane | 0 | 3 | Krypton | 20 ± 2 | | | n-Octane | 0 | Krypton | Methane | 1 | | | and the second | | | | | [·] Numbers in parentheses are interpolated or estimated values. $$v_{eij}^{1/3} = \frac{1}{2} \left(v_{ei}^{1/3} + v_{ej}^{1/3} \right) \tag{14}$$ $$z_{eij} = 0.291 - 0.08 \left(\frac{\omega_i + \omega_j}{2} \right)$$ (15) $$T_{eij} = \sqrt{T_{eij}T_{eij}}(1 - k_{ij})$$ (16) The binary constant k_{ij} represents the deviation from the geometric mean for T_{eij} . It is a constant characteristic of the i-j interaction; to a good approximation, k_{ij} is independent of the temperature, density, and composition. In general, k_{ij} must be obtained from some experimental information about the binary interaction. Good sources of this informa- tion are provided by second virial cross coefficients (Prausnitz, and Gunn, 1958) or by saturated liquid volumes of binary systems (Chueh and Prausnitz, 1967b), Table II presents our best estimates of k_{ij} for 115 binary systems. As new experimental data become available, this table should be revised and enlarged. The proposed mixing rule for a_{ij} differs from Redlich's original mixing rule in two respects: (1) introduction of a binary constant k_{ij} , and (2) combination of critical volumes and compressibility factors to obtain a_{ij} according to Equations 12 through 15. As a result of (2), the proposed mixing rule does not reduce to Redlich's original rule even when $k_{ij} = 0$, except when v_{cij}/v_{cj} is close to unity; in general,